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Summary. A bias correction was derived for the maxi- 
mum likelihood estimator (MLE) of the intraclass corre- 
lation. The bias consisted of two parts: a correction from 
MLE to the analysis of variance estimator (ANOVA) and 
the bias of ANOVA. The total possible bias was always 
negative and depended upon both the degree of correla- 
tion and the design size and balance. The first part of the 
bias was an exact algebraic expression from MLE to 
ANOVA, and the corrected estimator by this part was 
ANOVA. It was also shown that the first correction term 
was equivalent to Fisher's reciprocal bias correction on 
his Z scores. The total possible bias of MLE was large for 
small and moderate samples. Relative biases were larger 
for small parametric values and vice versa. To ensure a 
relative bias less than 10% assuming an intraclass corre- 
lation of 0.025, which is not unusual in most of the animal 
genetic studies, the total number of observations (N) 
should be not less than 500. From a design point of view, 
minimum bias occurred at n = 2, the minimum family size 
possible, under N fixed. 
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Introduction 

A frequently used tool in human quantitative genetics 
and animal breeding is the intraclass correlation coeffi- 
cient. In these disciplines, the intraclass correlation is 
often used to measure the degree of resemblance among 
family members. Thus, it is proportional to heritability 
(by one-quarter if derived from half-sib families, or one- 
half if derived from full-sib families), under certain as- 
sumptions. Heritability is a key parameter for prediction 

of selection gains. The square root of heritability mea- 
sures accuracy of selection (Falconer 1982). A common 
method of estimating intraclass correlation is analysis of 
variance (ANOVA) using a one-way random effects mod- 
el. Because of the availability of inexpensive and friendly 
computing, some computer-intensive statistical methods, 
such as maximum likelihood estimation (ML), have 
caught the attention of researchers in recent years. The 
maximum likelihood estimator of the intraclass correla- 
tion was derived by Rosner et al. (1977) for balanced data 
and by Donner and Koval (1980) for unbalanced data. 
Pearson's pairwise product-moment correlation, aver- 
aged over all possible pairs of observations that can be 
constructed within a family (Fisher 1925), is the MLE in 
the balanced case (Donner and Koval 1980). The MLE 
has desirable asymptotic properties including the asymp- 
totic unbiasedness, a feature shared by all maximum 
likelihood estimators. However, the MLE is biased for 
small and moderate samples. This bias aspect of the MLE 
has not been adequately addressed with its increasing 
popularity. Fisher gave a bias correction for the product- 
moment correlation for the balanced case (Fisher 1925). 
However, his correction has either been treated lightly, or 
else ignored or misinterpreted (e.g., Weinberg and Patel 
1981). It is the purpose of this note to show the extent of 
possible bias of the MLE for balanced data and to eluci- 
date the nature of Fisher's bias correction. Numerical 
calculations will be given to demonstrate the extent of 
bias for certain design situations. 

ANOVA and ML estimators of the intraclass correlation 

Consider the ANOVA estimator under the one-way random 
effects ANOVA model: 

Ylj : # r- a~ + eli (i = 1 , . . . ,  s, and j = 1 ..... n), (1) 
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Table 1. Analysis of variance of model 1 

Source df  SS MS EMS 

z Between families s -  1 SSA MSA ~r~ + n G 
2 Within families s (n -- 1) SSE MSE G 

where a, ~ iid (0, cry), e u ~ iid (0, ~z), ~ = G2 + ~2, and E(yu. ) = #. 
Usually a~ and eij are assumed to follow a normal distribution, 
but it is not necessary. 

In the argument that follows, we shall refer to a~ as families 
without loss of generality. Let j  and k index different members of 
family i; then the population intraclass correlation is defined as: 

O(Yu, Y,k)=C~ Yik)/(a,,j a,,~)=az,/( ~2 +~2). (2) 
The analysis of variance of Eq. 1 is summarized in Table 1 

(Snedecor and Cochran 1980, Sect. 13.5; and Fisher 1925, Sect. 
vn) .  

An ANOVA estimator or a sample version of 0 is 

#~ M S A - M S E  
0A= ^2 - 2 -  , (3) G + G  M S A + ( n -  1) MSE 

where 0~= MSE and ~ = (MSA-MSE) /n .  
For the MLE, an alternative model is considered. The as- 

sumptions of the model are: data Yu are all distributed about a 
common mean with the same variance a~, and Yu in the same 
family have a common correlation coefficient, 0, called the intra- 
class correlation coefficient (Snedecor and Cochran 1980). This 
alternative form of the one-way random model is also called a 
common correlation model (CCM) (Donner and Koval 1980). 
By further assuming multivariate normality of data, Rosner et al. 
(1977) derived the maximum likelihood estimator (OCML) for bal- 
anced data by directly maximizing the likelihood function with 
respect to #: 

s n n 

0ML = ~ 2 2 (YU--fi)(Y~k--Y)/(N(n--1)#~), f o r j # k ,  (4) 
[=i j=l  k=l 

where 

i - 1  j = i  

d2 = ~ i (Yu--Y)2/N and N=sn.  
i=1  j = l  

Donner and Koval (1980) noted that 0ML=0e, the pairwise 
intraclass correlation which is defined as the Pearson product- 
moment correlation averaged over all possible pairs of observa- 
tions that can be constructed within families, i.e., a family of size 

/ \  

n, could form 2 ( n )  pairs (Fisher 1925). 

Possible bias of M L E  

We shall first consider bias of the ANOVA estimator, since it will 
be used as an additional bias for MLE. An approximate bias 
formula for balanced data was given by Ponzoni and James 
(1978): 

- 2 0  -~)  (~ +(1 - 0)/n} {0 +(1 -~o)/(s n)} (5) 
E (0A -- 0) = s-- 1 

Notice that bias of ~a is always downward. Numerical stud- 
ies showed good agreement between Eq. 5 and the exact bias 
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Fig. 1. Relative errors (%) of Ponzoni and James' (1978) bias 
formula. Relative error was the deviation of Eq. 5 from the exact 
integrated bias divided by the exact bias. The design label refers 
to number of families (s) and family size (n), respectively, and 
N = s n  

calculated (Fig. 1) via the numerical integrations, using the exact 
sample distribution of the ANOVA estimator derived by Donner 
and Koval (1983). For the designs considered (N= 50 and 100), 
the relative errors of bias formula were well within the _+ 10% 
band for ~o <0.8 and s>  5 designs. Relative error was the devia- 
tion of Eq. 5 from the exact integrated bias divided by the exact 
bias. 

Now we examine the relationship between ANOVA and 
MLE. Thus, the possible bias of MLE can be easily assembled. 
As shown in the appendix, the MLE can be written in terms of 
mean squares as: 

M S A ( s -  l ) / s -  MSE 
0ML - -  M S A ( s -  1)/s+(n- 1) M S E  (6) 

The difference between MLE and ANOVA is: 

A 0 = ~ M L - - ~  A 

n MSA MSE 
: (7) 

[MSA + (n -1 )  MSE] [(s-1) MSA + s(n-1) MSE]" 

This difference is never positive. If one wishes, A0 can also be 
expressed in terms of 0ML and ~A a s :  

(1 --QML) (1 +(n--  1) OML) (8) 
1 + n ( s -  1 ) + ( n - 1 )  O,.L ' 

A~= 

and 

(1 --0a) (1 +(n--  1) 0A) respectively. (9) 
N - - l - ( n - - 1 )  0a ' 

The possible bias of MLE, Bias (0ML), is simply the sum of 
AO and Eq. 5, or Bias(0ML)=AO+(5). 



Results 

It was noted earlier that  Fisher 's  Op = 0ME' The bias given 
by Fisher  was in terms of Z scores. Recall that  (Fisher 

1925): 

1 1 + ( n - - I )  ~ML eZZ--I 
Z =  ~ in 1 - -~ML ' ~ML= e2Z+(n - 1) '  
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Fig. 2. Bias and relative bias (%) Of0M L under different layouts. 
Relative bias was defined as bias over parametric value. The 
design label refers to number of families (s) and family size (n), 
respectively, and N=sn  
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1 s 

and Bias (Z)=  - ~ In s-l--" 

The bias-corrected Z, Z* = Z -  Bias (Z). Consequently, 
the bias-corrected est imator  found by substituting Z* in 
the place of Z is 

~ML ( N -  1) + 1 
0* = ~ML (H - -  1) -~-/7 (S - -  l )  -~ 1" (10) 

The difference between OML and 0" is 

(1 --0ML)(1 + ( n -  l) 0MY) 
Z1O* = 0ML--  Q* = (11) 

1 + n ( s - - 1 ) + ( n - - l )  0ML 

This is the same form as that  of Eq. 8. That  is to say that  
the Fisher 's  bias correction for M L E  is not  an unbiased 
correction. Instead, the corrected estimator is the ANOVA 
estimator,  which has an addi t ional  bias of Eq. 5. 

The bias depends on both  correlat ion and design. The 
bias of the M L E  is always negative and is composed of 
two parts:  one is an exact algebraic correction term from 
M L E  to ANOVA and the other is the addi t ional  bias 
inherent in the ANOVA estimator.  

To investigate the extent of the bias, we conducted a 
number  of numerical  calculations using the sum of Eqs. 9 
and 5. Notice that  the first term, Eq. 9, was a function of 
the ANOVA est imator  rather than the parametr ic  value. 
Treating the ANOVA as the parametr ic  value during 
the calculations might introduce some biases. However,  
these introduced biases were negligible since the bias of 
ANOVA was relatively small. The results are summarized 
in Figs. 2 4. 

Figure 2 gives the biases and relative biases of ~ML as 
functions of Q under different layouts. Relative biases 
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Fig. 4. Bias of 0ML as a function of s (number of families) under 
N (total number of observations) fixed 

(RB) were defined as biases over parametr ic  values. Six 
layouts were used; for example, 20 x 5 meant  a design of 
20 families, each having five offspring. Biases were large 
(Fig. 2), usually not  less than 20% of relative biases, for 
the designs considered. Secondly, there was a maximum 
for a given design. Max ima  varied from 0.425 to 0.60 for 
different layouts. Fur thermore ,  pictures of relative biases 
were different from those of biases. RBs decreased uni- 
modal ly  with 4. RBs of small ~o (4 -< 0.1) were substantial ly 
larger than that  of large 4. 

Figure 3 shows biases of 0ML as a function of n, given 
s fixed. F o r  all the cases considered, there was one clear 
message that  the number  of families, s, should not  be too 
small (not less than 20); otherwise, biases could be very 
large. Consider  varying ~o's: biases of large 4's were larger 
than those of small 4's, and vice versa for RBs. 

Finally, it is always interesting to determine bow to 
obtain smaller biases under fixed resources from a design 
point  of view. In other words, given N, the total  number  
of observations,  what is the 'best '  al location strategy that  
would give the smallest bias possible? To answer this 
question, biases and RBs were plot ted against s for N 
fixed (Fig. 4). It was very clear that  minimum biases were 
at tained at n = 2, the smallest family size possible. Howev- 
er, this opt imal  condit ion with respect to bias does not  
coincide with Robertson's  opt imal  condition, n = (4 + 1)/4 
or s = 4  N/(Q + 1), or approximate ly  n =  1/4 (or s=  4 N),  
when ,o is very small, in terms of yielding minimum vari- 
ance under N fixed (Robertson 1959). 

Overall, to yield a RB not  greater than 10%, roughly 
500 da ta  points (N) are needed for Q=0.025, 250 for 
o=0.1 ,  and 100 for Q=0.5. In most  animal genetic stud- 
ies, Q is usually not  greater than 0.1. Therefore, the bias 
of 0ML would be large for small and moderate  samples. 
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Appendix 

~ " 

The numerator of Eq. 4=n 2 Z 0~i--)~) 2 -  ~. (y#_y)2 
i = 1  i = 1  j = l  

= n SSA - (SSA + SSE) 

= ( n -  1) SSA - SSE (al)  

= ( n - l )  ( s - l )  M S A - s ( n - ] )  MSE. 

s n 

cry ^ 2 = Z 5~ (Yu---V)2/N = (SSA + SSE)/N 
i - l j - 1  

= [(s-  1) MSA + s ( n -  1) MSE]/N. (A2) 

By substituting Eqs. A1 and A2 in Eq. 4, we get 

MSA ( s -  1)/s- MSE 
~dML-- MSA ( s -  1) /s+(n-  l) MSE" 
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